125 research outputs found

    Radiation reaction and the self-force for a point mass in general relativity

    Full text link
    A point particle of mass m moving on a geodesic creates a perturbation h, of the spacetime metric g, that diverges at the particle. Simple expressions are given for the singular m/r part of h and its quadrupole distortion caused by the spacetime. Subtracting these from h leaves a remainder h^R that is C^1. The self-force on the particle from its own gravitational field corrects the worldline at O(m) to be a geodesic of g+h^R. For the case that the particle is a small non-rotating black hole, an approximate solution to the Einstein equations is given with error of O(m^2) as m approaches 0.Comment: 4 pages, RevTe

    An approximate binary-black-hole metric

    Get PDF
    An approximate solution to Einstein's equations representing two widely-separated non-rotating black holes in a circular orbit is constructed by matching a post-Newtonian metric to two perturbed Schwarzschild metrics. The spacetime metric is presented in a single coordinate system valid up to the apparent horizons of the black holes. This metric could be useful in numerical simulations of binary black holes. Initial data extracted from this metric have the advantages of being linked to the early inspiral phase of the binary system, and of not containing spurious gravitational waves.Comment: 20 pages, 1 figure; some changes in Sec. IV B,C and Sec.

    Retarded coordinates based at a world line, and the motion of a small black hole in an external universe

    Full text link
    In the first part of this article I present a system of retarded coordinates based at an arbitrary world line of an arbitrary curved spacetime. The retarded-time coordinate labels forward light cones that are centered on the world line, the radial coordinate is an affine parameter on the null generators of these light cones, and the angular coordinates are constant on each of these generators. The spacetime metric in the retarded coordinates is displayed as an expansion in powers of the radial coordinate and expressed in terms of the world line's acceleration vector and the spacetime's Riemann tensor evaluated at the world line. The formalism is illustrated in two examples, the first involving a comoving world line of a spatially-flat cosmology, the other featuring an observer in circular motion in the Schwarzschild spacetime. The main application of the formalism is presented in the second part of the article, in which I consider the motion of a small black hole in an empty external universe. I use the retarded coordinates to construct the metric of the small black hole perturbed by the tidal field of the external universe, and the metric of the external universe perturbed by the presence of the black hole. Matching these metrics produces the MiSaTaQuWa equations of motion for the small black hole.Comment: 20 pages, revtex4, 2 figure

    Fermi Coordinates for Weak Gravitational Fields

    Full text link
    A Reference is corrected. (We derive the Fermi coordinate system of an observer in arbitrary motion in an arbitrary weak gravitational field valid to all orders in the geodesic distance from the worldline of the observer. In flat space-time this leads to a generalization of Rindler space for arbitrary acceleration and rotation. The general approach is applied to the special case of an observer resting with respect to the weak gravitational field of a static mass distribution. This allows to make the correspondence between general relativity and Newtonian gravity more precise.)Comment: 7 Pages, Preprint KONS-RGKU-94-04, LaTe

    Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole/slow-motion approximation

    Full text link
    The first objective of this work is to obtain practical prescriptions to calculate the absorption of mass and angular momentum by a black hole when external processes produce gravitational radiation. These prescriptions are formulated in the time domain within the framework of black-hole perturbation theory. Two such prescriptions are presented. The first is based on the Teukolsky equation and it applies to general (rotating) black holes. The second is based on the Regge-Wheeler and Zerilli equations and it applies to nonrotating black holes. The second objective of this work is to apply the time-domain absorption formalisms to situations in which the black hole is either small or slowly moving. In the context of this small-hole/slow-motion approximation, the equations of black-hole perturbation theory can be solved analytically, and explicit expressions can be obtained for the absorption of mass and angular momentum. The changes in the black-hole parameters can then be understood in terms of an interaction between the tidal gravitational fields supplied by the external universe and the hole's tidally-induced mass and current quadrupole moments. For a nonrotating black hole the quadrupole moments are proportional to the rate of change of the tidal fields on the hole's world line. For a rotating black hole they are proportional to the tidal fields themselves.Comment: 36 pages, revtex4, no figures, final published versio

    The influence of the cosmological expansion on local systems

    Get PDF
    Following renewed interest, the problem of whether the cosmological expansion affects the dynamics of local systems is reconsidered. The cosmological correction to the equations of motion in the locally inertial Fermi normal frame (the relevant frame for astronomical observations) is computed. The evolution equations for the cosmological perturbation of the two--body problem are solved in this frame. The effect on the orbit is insignificant as are the effects on the galactic and galactic--cluster scales.Comment: To appear in the Astrophysical Journal, Late

    On the physical meaning of Fermi coordinates

    Full text link
    (Some Latex problems should be removed in this version) Fermi coordinates (FC) are supposed to be the natural extension of Cartesian coordinates for an arbitrary moving observer in curved space-time. Since their construction cannot be done on the whole space and even not in the whole past of the observer we examine which construction principles are responsible for this effect and how they may be modified. One proposal for a modification is made and applied to the observer with constant acceleration in the two and four dimensional Minkowski space. The two dimensional case has some surprising similarities to Kruskal space which generalize those found by Rindler for the outer region of Kruskal space and the Rindler wedge. In perturbational approaches the modification leads also to different predictions for certain physical systems. As an example we consider atomic interferometry and derive the deviation of the acceleration-induced phase shift from the standard result in Fermi coordinates.Comment: 11 pages, KONS-RGKU-94/02 (Latex

    Weighing the Milky Way

    Full text link
    We describe an experiment to measure the mass of the Milky Way galaxy. The experiment is based on calculated light travel times along orthogonal directions in the Schwarzschild metric of the Galactic center. We show that the difference is proportional to the Galactic mass. We apply the result to light travel times in a 10cm Michelson type interferometer located on Earth. The mass of the Galactic center is shown to contribute 10^-6 to the flat space component of the metric. An experiment is proposed to measure the effect.Comment: 10 pages, 1 figur

    The Dipole Coupling of Atoms and Light in Gravitational Fields

    Full text link
    The dipole coupling term between a system of N particles with total charge zero and the electromagnetic field is derived in the presence of a weak gravitational field. It is shown that the form of the coupling remains the same as in flat space-time if it is written with respect to the proper time of the observer and to the measurable field components. Some remarks concerning the connection between the minimal and the dipole coupling are given.Comment: 10 pages, LaTe

    The Gravitational Demise of Cold Degenerate Stars

    Full text link
    We consider the long term fate and evolution of cold degenerate stars under the action of gravity alone. Although such stars cannot emit radiation through the Hawking mechanism, the wave function of the star will contain a small admixture of black hole states. These black hole states will emit radiation and hence the star can lose its mass energy in the long term. We discuss the allowed range of possible degenerate stellar evolution within this framework.Comment: LaTeX, 18 pages, one figure, accepted to Physical Review
    • 

    corecore